Mirapex
Lake Erie Medical DBA Quality Care Products LLC
Mirapex 0.125 MG
FULL PRESCRIBING INFORMATION
DESCRIPTION
MIRAPEX tablets contain pramipexole, a nonergot dopamine agonist. The chemical name of pramipexole dihydrochloride is (
S
)-2-amino-4,5,6,7-tetrahydro-6-(propylamino)benzothiazole dihydrochloride monohydrate. Its empirical formula is C10 H17 N3 S • 2HCl • H2O, and its molecular weight is 302.27.
The structural formula is:
Pramipexole dihydrochloride is a white to off-white powder substance. Melting occurs in the range of 296°C to 301°C, with decomposition. Pramipexole dihydrochloride is more than 20% soluble in water, about 8% in methanol, about 0.5% in ethanol, and practically insoluble in dichloromethane.
MIRAPEX tablets, for oral administration, contain 0.125 mg, 0.25 mg, 0.5 mg, 0.75 mg, 1 mg, or 1.5 mg of pramipexole dihydrochloride monohydrate. Inactive ingredients consist of mannitol, cornstarch, colloidal silicon dioxide, povidone, and magnesium stearate.
CLINICAL PHARMACOLOGY
Mechanism of Action
Pramipexole is a nonergot dopamine agonist with high relative in vitro specificity and full intrinsic activity at the D2 subfamily of dopamine receptors, binding with higher affinity to D3 than to D2 or D4 receptor subtypes.
Parkinson’s Disease:
The precise mechanism of action of pramipexole as a treatment for Parkinson's disease is unknown, although it is believed to be related to its ability to stimulate dopamine receptors in the striatum. This conclusion is supported by electrophysiologic studies in animals that have demonstrated that pramipexole influences striatal neuronal firing rates via activation of dopamine receptors in the striatum and the substantia nigra, the site of neurons that send projections to the striatum. The relevance of D3 receptor binding in Parkinson’s disease is unknown.
Restless Legs Syndrome (RLS):
The precise mechanism of action of Mirapex® (pramipexole dihydrochloride) tablets as a treatment for Restless Legs Syndrome (RLS) is unknown. Although the pathophysiology of RLS is largely unknown, neuropharmacological evidence suggests primary dopaminergic system involvement. Positron Emission Tomographic (PET) studies suggest that a mild striatal presynaptic dopaminergic dysfunction may be involved in the pathogenesis of RLS.
Pharmacokinetics
Pramipexole displays linear pharmacokinetics over the clinical dosage range. Its terminal half-life is about 8 hours in young healthy volunteers and about 12 hours in elderly volunteers (see
CLINICAL PHARMACOLOGY, Pharmacokinetics in Special Populations
). Steady-state concentrations are achieved within 2 days of dosing.
Absorption
Pramipexole is rapidly absorbed, reaching peak concentrations in approximately 2 hours. The absolute bioavailability of pramipexole is greater than 90%, indicating that it is well absorbed and undergoes little presystemic metabolism. Food does not affect the extent of pramipexole absorption, although the time of maximum plasma concentration (Tmax) is increased by about 1 hour when the drug is taken with a meal.
Distribution
Pramipexole is extensively distributed, having a volume of distribution of about 500 L (coefficient of variation [CV]=20%). It is about 15% bound to plasma proteins. Pramipexole distributes into red blood cells as indicated by an erythrocyte-to-plasma ratio of approximately 2.
Metabolism and Elimination
The terminal half-life of pramipexole is about 8 hours in healthy volunteers and 12 hours in elderly volunteers.
Urinary excretion is the major route of pramipexole elimination, with 90% of a pramipexole dose recovered in urine, almost all as unchanged drug. Nonrenal routes may contribute to a small extent to pramipexole elimination, although no metabolites have been identified in plasma or urine. The renal clearance of pramipexole is approximately 400 mL/min (CV=25%), approximately three times higher than the glomerular filtration rate. Thus, pramipexole is secreted by the renal tubules, probably by the organic cation transport system.
Pharmacodynamics
In a clinical trial with healthy volunteers, where pramipexole was titrated faster than recommended (every 3 days) up to 4.5 mg per day, an increase in blood pressure and heart rate was observed. Although mean values remained within normal reference ranges throughout the study, supine systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse rate for subjects treated with pramipexole generally increased during the up-titration phase, up to 10 mmHg, 7 mmHg, and 10 bpm higher than placebo, respectively. Higher SBP, DBP, and pulse rates compared to placebo were maintained until the pramipexole doses were tapered; values on the last day of tapering were generally similar to baseline values. Such effects have not been observed in clinical studies with Parkinson’s disease patients, and are most likely due to the forced up-titration every 3 days.
Pharmacokinetics in Special Populations
Because therapy with MIRAPEX tablets is initiated at a low dose and gradually titrated upward according to clinical tolerability to obtain the optimum therapeutic effect, adjustment of the initial dose based on gender, weight, or age is not necessary. However, renal insufficiency, which can cause a large decrease in the ability to eliminate pramipexole, may necessitate dosage adjustment (see CLINICAL PHARMACOLOGY, Renal Insufficiency ).
Gender
Pramipexole clearance is about 30% lower in women than in men, but most of this difference can be accounted for by differences in body weight. There is no difference in half-life between males and females.
Age
Pramipexole clearance decreases with age as the half-life and clearance are about 40% longer and 30% lower, respectively, in elderly (aged 65 years or older) compared with young healthy volunteers (aged less than 40 years). This difference is most likely due to the well-known reduction in renal function with age, since pramipexole clearance is correlated with renal function, as measured by creatinine clearance (see CLINICAL PHARMACOLOGY, Renal Insufficiency ).
Parkinson's Disease Patients
A cross-study comparison of data suggests that the clearance of pramipexole may be reduced by about 30% in Parkinson's disease patients compared with healthy elderly volunteers. The reason for this difference appears to be reduced renal function in Parkinson's disease patients, which may be related to their poorer general health. The pharmacokinetics of pramipexole were comparable between early and advanced Parkinson's disease patients.
Restless Legs Syndrome Patients
A cross-study comparison of data suggests that the pharmacokinetic profile of pramipexole administered once daily in RLS patients is similar to the pharmacokinetic profile of pramipexole in healthy volunteers.
Pediatric
The pharmacokinetics of pramipexole in the pediatric population have not been evaluated.
Hepatic Insufficiency
The influence of hepatic insufficiency on pramipexole pharmacokinetics has not been evaluated. Because approximately 90% of the recovered dose is excreted in the urine as unchanged drug, hepatic impairment would not be expected to have a significant effect on pramipexole elimination.
Renal Insufficiency
The clearance of pramipexole was about 75% lower in patients with severe renal impairment (creatinine clearance approximately 20 mL/min) and about 60% lower in patients with moderate impairment (creatinine clearance approximately 40 mL/min) compared with healthy volunteers. Also, it took longer to achieve steady state. A lower starting and/or maintenance dose may be appropriate in these patients (see PRECAUTIONS and DOSAGE AND ADMINISTRATION ). In patients with varying degrees of renal impairment, pramipexole clearance correlates well with creatinine clearance. Therefore, creatinine clearance can be used as a predictor of the extent of decrease in pramipexole clearance. Pramipexole clearance is extremely low in dialysis patients, as a negligible amount of pramipexole is removed by dialysis. Caution should be exercised when administering pramipexole to patients with renal disease.
Uses
INDICATIONS AND USAGEParkinson's Disease
Mirapex® (pramipexole dihydrochloride) tablets are indicated for the treatment of the signs and symptoms of idiopathic Parkinson's disease.
The effectiveness of MIRAPEX tablets was demonstrated in randomized, controlled trials in patients with early Parkinson's disease who were not receiving concomitant levodopa therapy as well as in patients with advanced disease on concomitant levodopa (see CLINICAL STUDIES ).
Restless Legs Syndrome
MIRAPEX tablets are indicated for the treatment of moderate-to-severe primary Restless Legs Syndrome (RLS).
Key diagnostic criteria for RLS are: an urge to move the legs usually accompanied or caused by uncomfortable and unpleasant leg sensations; symptoms begin or worsen during periods of rest or inactivity such as lying or sitting; symptoms are partially or totally relieved by movement such as walking or stretching at least as long as the activity continues; and symptoms are worse or occur only in the evening or night. Difficulty falling asleep may frequently be associated with symptoms of RLS.
CONTRAINDICATIONS
MIRAPEX tablets are contraindicated in patients who have demonstrated hypersensitivity to the drug or its ingredients.
WARNINGS
Falling Asleep During Activities of Daily Living
Patients treated with Mirapex® (pramipexole dihydrochloride) tablets have reported falling asleep while engaged in activities of daily living, including the operation of motor vehicles which sometimes resulted in accidents. Although many of these patients reported somnolence while on MIRAPEX tablets, some perceived that they had no warning signs such as excessive drowsiness, and believed that they were alert immediately prior to the event. Some of these events had been reported as late as one year after the initiation of treatment.
Somnolence is a common occurrence in patients receiving MIRAPEX tablets at doses above 1.5 mg/day (0.5 mg TID) for Parkinson’s disease. In controlled clinical trials in RLS, patients treated with MIRAPEX tablets at doses of 0.25-0.75 mg once a day, the incidence of somnolence was 6% compared to an incidence of 3% for placebo-treated patients (see ADVERSE EVENTS, Table 5). Many clinical experts believe that falling asleep while engaged in activities of daily living always occurs in a setting of pre-existing somnolence, although patients may not give such a history. For this reason, prescribers should continually reassess patients for drowsiness or sleepiness, especially since some of the events occur well after the start of treatment. Prescribers should also be aware that patients may not acknowledge drowsiness or sleepiness until directly questioned about drowsiness or sleepiness during specific activities.
Before initiating treatment with MIRAPEX tablets, patients should be advised of the potential to develop drowsiness and specifically asked about factors that may increase the risk with MIRAPEX tablets such as concomitant sedating medications, the presence of sleep disorders, and concomitant medications that increase pramipexole plasma levels (e.g., cimetidine - see PRECAUTIONS, Drug Interactions). If a patient develops significant daytime sleepiness or episodes of falling asleep during activities that require active participation (e.g., conversations, eating, etc.), MIRAPEX tablets should ordinarily be discontinued. If a decision is made to continue MIRAPEX tablets, patients should be advised to not drive and to avoid other potentially dangerous activities. While dose reduction clearly reduces the degree of somnolence, there is insufficient information to establish that dose reduction will eliminate episodes of falling asleep while engaged in activities of daily living.
Symptomatic Hypotension
Dopamine agonists, in clinical studies and clinical experience, appear to impair the systemic regulation of blood pressure, with resulting orthostatic hypotension, especially during dose escalation. Parkinson's disease patients, in addition, appear to have an impaired capacity to respond to an orthostatic challenge. For these reasons, both Parkinson's disease patients and RLS patients being treated with dopaminergic agonists ordinarily require careful monitoring for signs and symptoms of orthostatic hypotension, especially during dose escalation, and should be informed of this risk (see
PRECAUTIONS, Information for Patients
).
In clinical trials of pramipexole, however, and despite clear orthostatic effects in normal volunteers, the reported incidence of clinically significant orthostatic hypotension was not greater among those assigned to Mirapex® (pramipexole dihydrochloride) tablets than among those assigned to placebo. This result, especially with the higher doses used in Parkinson’s disease, is clearly unexpected in light of the previous experience with the risks of dopamine agonist therapy.
While this finding could reflect a unique property of pramipexole, it might also be explained by the conditions of the study and the nature of the population enrolled in the clinical trials. Patients were very carefully titrated, and patients with active cardiovascular disease or significant orthostatic hypotension at baseline were excluded. Also, clinical trials in patients with RLS did not incorporate orthostatic challenges with intensive blood pressure monitoring done in close temporal proximity to dosing.
Hallucinations
In the three double-blind, placebo-controlled trials in early Parkinson's disease, hallucinations were observed in 9% (35 of 388) of patients receiving MIRAPEX tablets, compared with 2.6% (6 of 235) of patients receiving placebo. In the four double-blind, placebo-controlled trials in advanced Parkinson's disease, where patients received MIRAPEX tablets and concomitant levodopa, hallucinations were observed in 16.5% (43 of 260) of patients receiving MIRAPEX tablets compared with 3.8% (10 of 264) of patients receiving placebo. Hallucinations were of sufficient severity to cause discontinuation of treatment in 3.1% of the early Parkinson's disease patients and 2.7% of the advanced Parkinson's disease patients compared with about 0.4% of placebo patients in both populations.
Age appears to increase the risk of hallucinations attributable to pramipexole. In the early Parkinson's disease patients, the risk of hallucinations was 1.9 times greater than placebo in patients younger than 65 years and 6.8 times greater than placebo in patients older than 65 years. In the advanced Parkinson's disease patients, the risk of hallucinations was 3.5 times greater than placebo in patients younger than 65 years and 5.2 times greater than placebo in patients older than 65 years.
In the RLS clinical program, one pramipexole-treated patient (of 889) reported hallucinations; this patient discontinued treatment and the symptoms resolved.
PRECAUTIONS
Rhabdomyolysis
A single case of rhabdomyolysis occurred in a 49-year-old male with advanced Parkinson's disease treated with MIRAPEX tablets. The patient was hospitalized with an elevated CPK (10,631 IU/L). The symptoms resolved with discontinuation of the medication.
Renal
Since pramipexole is eliminated through the kidneys, caution should be exercised when prescribing Mirapex® (pramipexole dihydrochloride) tablets to patients with renal insufficiency (see DOSAGE AND ADMINISTRATION ).
Dyskinesia
MIRAPEX tablets may potentiate the dopaminergic side effects of levodopa and may cause or exacerbate preexisting dyskinesia. Decreasing the dose of levodopa may ameliorate this side effect.
Retinal Pathology in Albino Rats
Pathologic changes (degeneration and loss of photoreceptor cells) were observed in the retina of albino rats in the 2-year carcinogenicity study. While retinal degeneration was not diagnosed in pigmented rats treated for 2 years, a thinning in the outer nuclear layer of the retina was slightly greater in rats given drug compared with controls. Evaluation of the retinas of albino mice, monkeys, and minipigs did not reveal similar changes. The potential significance of this effect in humans has not been established, but cannot be disregarded because disruption of a mechanism that is universally present in vertebrates (i.e., disk shedding) may be involved (see ANIMAL TOXICOLOGY ).
Events Reported with Dopaminergic Therapy
Although the events enumerated below may not have been reported in association with the use of pramipexole in its development program, they are associated with the use of other dopaminergic drugs. The expected incidence of these events, however, is so low that even if pramipexole caused these events at rates similar to those attributable to other dopaminergic therapies, it would be unlikely that even a single case would have occurred in a cohort of the size exposed to pramipexole in studies to date.
Withdrawal-Emergent Hyperpyrexia and Confusion
Although not reported with pramipexole in the clinical development program, a symptom complex resembling the neuroleptic malignant syndrome (characterized by elevated temperature, muscular rigidity, altered consciousness, and autonomic instability), with no other obvious etiology, has been reported in association with rapid dose reduction, withdrawal of, or changes in antiparkinsonian therapy
Fibrotic Complications
Although not reported with pramipexole in the clinical development program, cases of retroperitoneal fibrosis, pulmonary infiltrates, pleural effusion, and pleural thickening, pericarditis, and cardiac valvulopathy have been reported in some patients treated with ergot-derived dopaminergic agents. While these complications may resolve when the drug is discontinued, complete resolution does not always occur.
Although these adverse events are believed to be related to the ergoline structure of these compounds, whether other, nonergot derived dopamine agonists can cause them is unknown.
A small number of reports have been received of possible fibrotic complications, including peritoneal fibrosis, pleural fibrosis, and pulmonary fibrosis in the post-marketing experience for Mirapex® (pramipexole dihydrochloride) tablets. While the evidence is not sufficient to establish a causal relationship between MIRAPEX tablets and these fibrotic complications, a contribution of MIRAPEX tablets cannot be completely ruled out in rare cases.
Melanoma
Epidemiological studies have shown that patients with Parkinson’s disease have a higher risk (2- to approximately 6-fold higher) of developing melanoma than the general population. Whether the increased risk observed was due to Parkinson’s disease or other factors, such as drugs used to treat Parkinson’s disease, is unclear.
For the reasons stated above, patients and providers are advised to monitor for melanomas frequently and on a regular basis when using MIRAPEX tablets for any indication. Ideally, periodic skin examinations should be performed by appropriately qualified individuals (e.g., dermatologists).
Impulse Control/Compulsive Behaviors
Cases of pathological gambling, hypersexuality, and compulsive eating (including binge eating), and compulsive shopping have been reported in patients treated with dopamine agonist therapy, including pramipexole therapy. As described in the literature, such behaviors are generally reversible upon dose reduction or treatment discontinuation.
Rebound and Augmentation in RLS
Reports in the literature indicate treatment of RLS with dopaminergic medications can result in a shifting of symptoms to the early morning hours, referred to as rebound. Rebound was not reported in the clinical trials of MIRAPEX tablets but the trials were generally not of sufficient duration to capture this phenomenon. Augmentation has also been described during therapy for RLS. Augmentation refers to the earlier onset of symptoms in the evening (or even the afternoon), increase in symptoms, and spread of symptoms to involve other extremities. In a controlled trial of MIRAPEX tablets for RLS, approximately 20% of both the Mirapex- and the placebo-treated patients reported at least a 2-hour earlier onset of symptoms during the day by the end of 3 months of treatment. The frequency and severity of augmentation and/or rebound after longer-term use of MIRAPEX tablets and the appropriate management of these events have not been adequately evaluated in controlled clinical trials.
Laboratory Tests
During the development of MIRAPEX tablets, no systematic abnormalities on routine laboratory testing were noted. Therefore, no specific guidance is offered regarding routine monitoring; the practitioner retains responsibility for determining how best to monitor the patient in his or her care.
Drug Interactions
Carbidopa/levodopa: Carbidopa/levodopa did not influence the pharmacokinetics of pramipexole in healthy volunteers (N=10). Pramipexole did not alter the extent of absorption (AUC) or the elimination of carbidopa/levodopa, although it caused an increase in levodopa Cmax by about 40% and a decrease in Tmax from 2.5 to 0.5 hours.
Selegiline: In healthy volunteers (N=11), selegiline did not influence the pharmacokinetics of pramipexole.
Amantadine: Population pharmacokinetic analyses suggest that amantadine may slightly decrease the oral clearance of pramipexole.
Cimetidine: Cimetidine, a known inhibitor of renal tubular secretion of organic bases via the cationic transport system, caused a 50% increase in pramipexole AUC and a 40% increase in half-life (N=12).
Probenecid: Probenecid, a known inhibitor of renal tubular secretion of organic acids via the anionic transporter, did not noticeably influence pramipexole pharmacokinetics (N=12).
Other drugs eliminated via renal secretion: Population pharmacokinetic analysis suggests that coadministration of drugs that are secreted by the cationic transport system (e.g., cimetidine, ranitidine, diltiazem, triamterene, verapamil, quinidine, and quinine) decreases the oral clearance of pramipexole by about 20%, while those secreted by the anionic transport system (e.g., cephalosporins, penicillins, indomethacin, hydrochlorothiazide, and chlorpropamide) are likely to have little effect on the oral clearance of pramipexole.
CYP interactions: Inhibitors of cytochrome P450 enzymes would not be expected to affect pramipexole elimination because pramipexole is not appreciably metabolized by these enzymes in vivo or in vitro. Pramipexole does not inhibit CYP enzymes CYP1A2, CYP2C9, CYP2C19, CYP2E1, and CYP3A4. Inhibition of CYP2D6 was observed with an apparent Ki of 30 µM, indicating that pramipexole will not inhibit CYP enzymes at plasma concentrations observed following the clinical dose of 4.5 mg/day (1.5 mg TID).
Dopamine antagonists: Since pramipexole is a dopamine agonist, it is possible that dopamine antagonists, such as the neuroleptics (phenothiazines, butyrophenones, thioxanthenes) or metoclopramide, may diminish the effectiveness of Mirapex® (pramipexole dihydrochloride) tablets.
Drug/Laboratory Test Interactions
There are no known interactions between MIRAPEX tablets and laboratory tests.
Carcinogenesis, Mutagenesis, Impairment of Fertility
Two-year carcinogenicity studies with pramipexole have been conducted in mice and rats. Pramipexole was administered in the diet to Chbb:NMRI mice at doses of 0.3, 2, and 10 mg/kg/day [0.3, 2.2, and 11 times the Maximum Recommended Human Dose (MRHD) (MRHD of 1.5 mg TID on a mg/m2 basis)]. Pramipexole was administered in the diet to Wistar rats at 0.3, 2, and 8 mg/kg/day (plasma AUCs were 0.3, 2.5, and 12.5 times the AUC in humans at the MRHD). No significant increases in tumors occurred in either species.
Pramipexole was not mutagenic or clastogenic in a battery of assays, including the in vitro Ames assay, V79 gene mutation assay for HGPRT mutants, chromosomal aberration assay in Chinese hamster ovary cells, and in vivo mouse micronucleus assay.
In rat fertility studies, pramipexole at a dose of 2.5 mg/kg/day (5 times the MRHD on a mg/m2 basis), prolonged estrus cycles and inhibited implantation. These effects were associated with reductions in serum levels of prolactin, a hormone necessary for implantation and maintenance of early pregnancy in rats.
Pregnancy
Teratogenic Effect: Pregnancy Category C.
When pramipexole was given to female rats throughout pregnancy, implantation was inhibited at a dose of 2.5 mg/kg/day (5 times the MRHD on a mg/m2 basis). Administration of 1.5 mg/kg/day of pramipexole to pregnant rats during the period of organogenesis (gestation days 7 through 16) resulted in a high incidence of total resorption of embryos. The plasma AUC in rats at this dose was 4 times the AUC in humans at the MRHD. These findings are thought to be due to the prolactin-lowering effect of pramipexole, since prolactin is necessary for implantation and maintenance of early pregnancy in rats (but not rabbits or humans). Because of pregnancy disruption and early embryonic loss in these studies, the teratogenic potential of pramipexole could not be adequately evaluated. There was no evidence of adverse effects on embryo-fetal development following administration of up to 10 mg/kg/day to pregnant rabbits during organogenesis (plasma AUC was 71 times that in humans at the MRHD). Postnatal growth was inhibited in the offspring of rats treated with 0.5 mg/kg/day (approximately equivalent to the MRHD on a mg/m2 basis) or greater during the latter part of pregnancy and throughout lactation.
There are no studies of pramipexole in human pregnancy. Because animal reproduction studies are not always predictive of human response, pramipexole should be used during pregnancy only if the potential benefit outweighs the potential risk to the fetus.
Nursing Mothers
A single-dose, radio-labeled study showed that drug-related materials were excreted into the breast milk of lactating rats. Concentrations of radioactivity in milk were three to six times higher than concentrations in plasma at equivalent time points.
Other studies have shown that pramipexole treatment resulted in an inhibition of prolactin secretion in humans and rats.
It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from pramipexole, a decision should be made as to whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.
Pediatric Use
The safety and efficacy of Mirapex® (pramipexole dihydrochloride) tablets in pediatric patients has not been established.
Geriatric Use
Pramipexole total oral clearance was approximately 30% lower in subjects older than 65 years compared with younger subjects, because of a decline in pramipexole renal clearance due to an age-related reduction in renal function. This resulted in an increase in elimination half-life from approximately 8.5 hours to 12 hours. In clinical studies with Parkinson’s disease patients, 38.7% of patients were older than 65 years. There were no apparent differences in efficacy or safety between older and younger patients, except that the relative risk of hallucination associated with the use of MIRAPEX tablets was increased in the elderly. In clinical studies with RLS patients, 22% of patients were at least 65 years old. There were no apparent differences in efficacy or safety between older and younger patients.
Enter section text here
OVERDOSAGE
There is no clinical experience with massive overdosage. One patient, with a 10-year history of schizophrenia, took 11 mg/day of pramipexole for 2 days in a clinical trial to evaluate the effect of pramipexole in schizophrenic patients. No adverse events were reported related to the increased dose. Blood pressure remained stable although pulse rate increased to between 100 and 120 beats/minute. The patient withdrew from the study at the end of week 2 due to lack of efficacy.
There is no known antidote for overdosage of a dopamine agonist. If signs of central nervous system stimulation are present, a phenothiazine or other butyrophenone neuroleptic agent may be indicated; the efficacy of such drugs in reversing the effects of overdosage has not been assessed. Management of overdose may require general supportive measures along with gastric lavage, intravenous fluids, and electrocardiogram monitoring.
DOSAGE AND ADMINISTRATIONParkinson's Disease
In all clinical studies, dosage was initiated at a subtherapeutic level to avoid intolerable adverse effects and orthostatic hypotension. Mirapex® (pramipexole dihydrochloride) tablets should be titrated gradually in all patients. The dosage should be increased to achieve a maximum therapeutic effect, balanced against the principal side effects of dyskinesia, hallucinations, somnolence, and dry mouth.
Dosing in Patients with Normal Renal Function
Initial Treatment
Dosages should be increased gradually from a starting dose of 0.375 mg/day given in three divided doses and should not be increased more frequently than every 5 to 7 days.
Mirapex® (pramipexole dihydrochloride) tablets were effective and well tolerated over a dosage range of 1.5 to 4.5 mg/day administered in equally divided doses three times per day with or without concomitant levodopa (approximately 800 mg/day).
In a fixed-dose study in early Parkinson's disease patients, doses of 3 mg, 4.5 mg, and 6 mg per day of MIRAPEX tablets were not shown to provide any significant benefit beyond that achieved at a daily dose of 1.5 mg/day. However, in the same fixed-dose study, the following adverse events were dose related: postural hypotension, nausea, constipation, somnolence, and amnesia. The frequency of these events was generally 2-fold greater than placebo for pramipexole doses greater than 3 mg/day. The incidence of somnolence reported with pramipexole at a dose of 1.5 mg/day was comparable to placebo.
When MIRAPEX tablets are used in combination with levodopa, a reduction of the levodopa dosage should be considered. In a controlled study in advanced Parkinson's disease, the dosage of levodopa was reduced by an average of 27% from baseline
Discontinuation of Treatment
It is recommended that MIRAPEX tablets be discontinued over a period of 1 week; in some studies, however, abrupt discontinuation was uneventful.
Restless Legs Syndrome
The recommended starting dose of MIRAPEX tablets is 0.125 mg taken once daily 2-3 hours before bedtime. For patients requiring additional symptomatic relief, the dose may be increased every 4-7 days (Table 9). Although the dose of MIRAPEX tablets was increased to 0.75 mg in some patients during long-term open-label treatment
Patients with Renal Impairment
The duration between titration steps should be increased to 14 days in RLS patients with severe and moderate renal impairment (creatinine clearance 20-60 mL/min) (see CLINICAL PHARMACOLOGY , Renal Insufficiency ).
Discontinuation of Treatment
In clinical trials of patients being treated for RLS with doses up to 0.75 mg once daily, Mirapex® (pramipexole dihydrochloride) tablets were discontinued without a taper
HOW SUPPLIED
MIRAPEX tablets are available as follows:
0.125 mg:
white, round tablet with "BI" on one side and "83" on the reverse side.
0.25 mg:
white, oval, scored tablet with "BI BI" on one side and "84 84" on the reverse side.
0.5 mg:
white, oval, scored tablet with "BI BI" on one side and "85 85" on the reverse side.
0.75 mg:
white, oval, debossed tablet with "BI" on one side and "101" on the reverse side.
1 mg:
white, round, scored tablet with "BI BI" on one side and "90 90" on the reverse side.
1.5 mg:
white, round, scored tablet with "BI BI" on one side and "91 91" on the reverse side.
Store at 25°C (77°F); excursions permitted to 15°-30°C (59°-86°F) [see USP Controlled Room Temperature]. Protect from light.
Store in a safe place out of the reach of children.
Address medical inquiries to: http://us.boehringer-ingelheim.com, (800) 542-6257 or (800) 459-9906 TTY.
Mirapex®
(pramipexole dihydrochloride)
0.125 mg, 0.25 mg, 0.5 mg, 0.75 mg,
1 mg, and 1.5 mg Tablets
Patient Information
Mirapex® [mîr′-ah-pěx] (pramipexole dihydrochloride) tablets
Read the Patient Information that comes with MIRAPEX before you start taking it and each time you get a refill. There may be some new information. This leaflet does not take the place of talking with your doctor about your medical condition or your treatment.
What is the most important information I should know about MIRAPEX?
MIRAPEX may cause you to fall asleep while you are doing daily activities such as driving, talking with other people, watching TV, or eating.
- Some people taking MIRAPEX have had car accidents because they fell asleep while driving.
- Some patients did not feel sleepy before they fell asleep while driving. You could fall asleep without any warning.
Do not drive a car, operate a machine, or do anything that needs you to be alert until you know how MIRAPEX affects you.
Tell your doctor right away if you fall asleep while you are doing activities such as talking with people, watching TV, eating, or driving, or if you feel sleepier than is normal for you.
What is MIRAPEX?
MIRAPEX is a prescription medicine to treat
- primary Restless Legs Syndrome.
- signs and symptoms of Parkinson's disease.
MIRAPEX has not been studied in children.
Who should not take MIRAPEX?
Do not take MIRAPEX if you are allergic to pramipexole or any of the inactive ingredients of MIRAPEX. See the end of this leaflet for a complete list of ingredients in MIRAPEX.
What should I tell my doctor before taking MIRAPEX?
Tell your doctor about all of your medical conditions, including if you
- feel sleepy during the day from a sleep problem other than Restless Legs Syndrome.
- have low blood pressure, or if you feel dizzy or faint, especially when getting up from a lying or sitting position.
- have trouble controlling your muscles (dyskinesia).
- have kidney problems.
- are pregnant or plan to become pregnant. It is not known if MIRAPEX will harm your unborn baby.
- are breast feeding. It is not known if MIRAPEX will pass into your breast milk. You and your doctor should decide if you will take MIRAPEX or breastfeed. You should not do both.
- drink alcohol. Alcohol can increase the chance that MIRAPEX will make you feel sleepy or fall asleep when you should be awake.
Tell your doctor about all the medicines you take, including prescription and non-prescription medicines, vitamins, and herbal supplements. Especially tell your doctor if you take any other medicines that make you sleepy. MIRAPEX and other medicines may interact with each other causing side effects. MIRAPEX may affect the way other medicines work, and other medicines may affect how MIRAPEX works.
How should I take MIRAPEX?
- Take MIRAPEX exactly as your doctor tells you to. Your doctor will tell you how many MIRAPEX tablets to take and when to take them.
- Your doctor may change your dose until you are taking the right amount of medicine to control your symptoms. Do not take more or less MIRAPEX than your doctor tells you to.
- MIRAPEX can be taken with or without food. Taking MIRAPEX with food may lower your chances of getting nausea.
- If you miss a dose, do not double your next dose . Skip the dose you missed and take your next regular dose.
- Be sure to tell your doctor right away if you stop taking MIRAPEX for any reason. Do not start taking MIRAPEX again before speaking with your doctor. If you have Parkinson’s disease and are stopping Mirapex, you should stop Mirapex slowly over 7 days.
What should I avoid while taking MIRAPEX?
- Do not drive a car, operate a machine, or do anything that needs you to be alert until you know how MIRAPEX affects you. See “ What is the most important information I should know about MIRAPEX? ” at the beginning of this leaflet.
- Do not drink alcohol while taking MIRAPEX. It can increase your chances of feeling sleepy or falling asleep when you should be awake.
What are the possible side effects of MIRAPEX?
MIRAPEX may cause serious side effects, including
- falling asleep during normal daily activities . See “ What is the most important information I should know about MIRAPEX?”
- low blood pressure when you sit or stand up quickly . You may have dizziness, nausea, fainting, or sweating. Sit and stand up slowly after you have been sitting or lying down for a while.
- hallucinations . You may see, hear, feel, or taste something that isn’t there. You have a higher chance of having hallucinations if you are over 65 years old.
The most common side effects in people taking MIRAPEX for Restless Legs Syndrome are nausea and sleepiness.
The most common side effects in people taking MIRAPEX for Parkinson’s disease are nausea, dizziness, sleepiness, constipation, hallucinations, insomnia, muscle weakness, confusion, and abnormal movements.
These are not all the possible side effects of MIRAPEX. For more information ask your doctor or pharmacist.
Be sure to talk to your doctor about any side effects that bother you or that do not go away.
Other Information about MIRAPEX
Studies of people with Parkinson’s disease show that they may be at an increased risk of developing melanoma, a form of skin cancer, when compared to people without Parkinson’s disease. It is not known if this problem is associated with Parkinson’s disease or the medicines used to treat Parkinson’s disease. MIRAPEX is one of the medicines used to treat Parkinson’s disease, therefore, patients being treated with MIRAPEX should have periodic skin examinations.
There have been reports of patients taking certain medicines to treat Parkinson’s disease or RLS, including MIRAPEX, that have reported problems with gambling, compulsive eating, compulsive shopping, and increased sex drive. It is not possible to reliably estimate how often these behaviors occur or to determine which factors may contribute to them. If you or your family members notice that you are developing unusual behaviors, talk to your doctor.
How should I store MIRAPEX?
- Store MIRAPEX tablets at room temperature [77°F (25°C)]. Short-term exposure to higher or lower temperatures [from 59°F (15°C) to 86°F (30°C)] is acceptable. Ask your doctor or pharmacist if you have any questions about storing your tablets.
- Keep MIRAPEX out of light.
- Keep MIRAPEX and all medicines out of the reach of children.
General information about MIRAPEX
Medicines are sometimes prescribed for purposes other than those listed in this Patient Information leaflet. Do not take MIRAPEX for a condition for which it was not prescribed. Do not share MIRAPEX with other people, even if they have the same symptoms you do. It may harm them.
This Patient Information leaflet summarizes the most important information about MIRAPEX. For more information, talk with your doctor or pharmacist. They can give you information about MIRAPEX that is written for healthcare professionals. For additional information, you may also call Boehringer Ingelheim Pharmaceuticals, Inc. at 1-800-542-6257, or (TTY) 1-800-459-9906. You may also request information through the company website at http://us.boehringer-ingelheim.com.
What are the ingredients in MIRAPEX?
Active Ingredient : pramipexole dihydrochloride monohydrate
Inactive Ingredients : mannitol, cornstarch, colloidal silicon dioxide, povidone, and magnesium stearate
Distributed by:
Boehringer Ingelheim Pharmaceuticals, Inc.
Ridgefield, CT 06877 USA
Licensed from:
Boehringer Ingelheim International GmbH
Trademark under license from:
Boehringer Ingelheim International GmbH
U.S. Patent Nos. 4,886,812; 6,001,861; and 6,194,445
©2009, Boehringer Ingelheim International GmbH
ALL RIGHTS RESERVED
Rev: April 2009
OT1317PC2409
2001/05
OT1338H
10003128/08
IT1322G
10003129/07
Image of label
MirapexPramipexole Dihydrochloride TABLET
|